AP Technology[™]

AP60 and APXe: A breakthrough in productivity, energy consumption and emissions

AP60 pot

AP60 and APXe pots enable a step change in pot technology by overcoming the challenges of very high amperage (500-600kA). They are the result of years of continuous and focused efforts in R&D and pilot-scale operations.

RioTintoAlcan

On the right, AP60 performance test results

Both AP60 and APXe are based on the same optimised framework (busbars, shell and superstructure) and operating equipment. The anode assemblies, cathodes and linings, ventilation and gas flow differ to meet the respective needs of each technology.

Feature	AP60	APXe	
Busbar	Common		
Shell	Common		
Superstructure	Common		
Alumina feeding device	Corr	imon	
Anode assembly	High productivity	Low energy	
Cathode and lining	High productivity	Low energy	
Shell ventilation	High productivity	Low energy	
Gas flow	High productivity	Low energy	
Pot control system (ALPSYS™)	Common		
Equipment (pot tending assemblies, vehicles, ladles, etc.)	Common		
Building	Com	imon	

These two technologies deliver a dual performance pot solution:

- High labour productivity and low CAPEX/t for AP60
- Very low energy consumption and low OPEX/t for APXe
- Very low HF emissions

	AP60		APXe
	1st generation (Jonquière 2014)	2nd generation	
Current (kA)	570	600	500
Pot production (t/d)	4.3	> 4.5	3.7
Specific energy consumption (MWh/t)	13.3	< 13.0	12.3

Phase 1 at Jonquière (Quebec): one year of operation

The first phase of the Jonquière smelter consists of a 38-cell plant (31 AP60 first-generation pots and 7 AP60 second-generation pots) with an annual production capacity of 60,000 tonnes of aluminium. This initial phase also includes the infrastructure required for the subsequent phases.

The last of the smelter's first 38 cells was started in December 2013. The smelter ran satisfactorily throughout 2014. The performance test of the first-generation AP60 technology was conducted in August 2014 during a period of 30 days and produced the excellent results summarised in the following table.

Key indicator	Result
Metal production (kg/p/d)	4,407
Amperage (kA)	570.7
Current efficiency (%)	95.9
SEC (kWh/t Al)*	13,090
Anode effect frequency (ae/p/d)	0.02
Roof vent fluoride emissions (kg F/t Al)	0.21

* SEC computed for an industrial plant

Testing demonstrated an outstanding environmental performance for fluoride emissions (0.21 kg Ft/t Al) and anode effect rate (0.02 AE/pot/day). The improved fluoride emission performance is the result of the pot gas collection system's innovative design inside the superstructure, enhanced pot tightness compared to previous pot generations and the very stable pot behaviour.

In January 2015, Jonquière achieved an amperage of over 600kA in the smelter's boosted section.

"The performance of the AP60 cells over the past 12 months represents an all-time best for Rio Tinto Alcan's aluminium smelting technology. The optimised framework including busbars, shell and superstructure deliver a very high level of cost effectiveness compared to previous cell generations by ensuring benchmark productivity, low energy consumption and record low emissions."

Claude Vanvoren

Vice President Technology and Research and Development

Technology sales department 725, rue Aristide Bergès - BP 7 38341 Voreppe Cedex France Rio Tinto Alcan head office 1188 Sherbrooke Street West Montreal, Quebec H3A 3G2 Canada

T +33 476 578 500 F +33 476 566 110 T +1 514 848 8000 F +1 514 848 8115 Mailing address PO Box 6090 Montreal, Quebec H3C 3A7 Canada

ap-technology.com

riotintoalcan.com

Production: tmdesign.ca © Rio Tinto Alcan